

Keeping an eye on the Blue Marble: How NASA studies Earth's weather, climate and hydrology from space

Dalia Kirschbaum NASA Goddard Space Flight Center

3-27-2014

http://pmm.nasa.gov

What are we really studying?

NASA Operating Missions

Tropical Rainfall Measuring Mission (TRMM) TRMM Launched November 27th, 1997 1987- TRMM concept 1988- TRMM Steering 1988- Phase A plan for proposed Group 1981 TRMM NASA Reference Publication 1183 April 1987 PRECIPITATION MEASUREMENTS PRELIMINARY PROJECT PLAN On Requirements for a FROM SPACE MEASURE TROPICAL RAINFAL FOR THE Satellite Mission to TROPICAL RAINFALL MEASURING Measure Tropical Rainfall MISSION WORKSHOP REPORT (TRMM) PHASE A DAVID ATLAS and OTTO W. THIELE PART I: TECHNICAL PLAN OCTOBER 1981 NVZV **JULY 1988** dard Space Flight Ce Report of the Science Steering Group 1V2V NASA GODDARD SPACE FLIGHT CENTER NASA CREENRELT, MARYLAND

Instrument Payload:

Σ

œ

٥

C

۲ ۲

0

TRMM Microwave Imager (TMI) 10, 19, 37, 86 GHz, conical scanning Precipitation Radar (PR) [Japan] 14 GHz, cross-track scanning

Lightning Imaging Sensor (LIS) [MSFC] Staring optical array Visible IR Scanner (VIRS) 5 channel cross track scanning

5-channel, cross-track scanning

v oraș Patras en viraș Patras en viraș

TRMM's legacy

TRMM Climatology in the tropics and subtropics. Now has 16+ years of data to evaluate daily to interannual cycles

Σ

œ

٩

2 0

9

U

۲ ۲

0

3-hour window with passive microwave information (gap filled with Geo-IR) <u>Calibrated by TRMM</u>

Near real-time product available ~6-12 hours after observation time

HQVAR 18Z 11 August 2005 (mm/h)

n

2 4

6

Tropical Rainfall Measuring Mission

Hurricane Sandy (Oct. 22-31st, 2012)

Ľ

œ ۵.

0

TRMM image on Oct. 28th

NASA

TRMM versus GPM coverage animation: <u>http://svs.gsfc.nasa.gov/goto?11165</u> GPM constellation animation: <u>http://gpm.nasa.gov/education/videos/global-precipitation-measurement-constellation</u>

Σ

– ပ

۵.

0

5

GPM instrument animation: <u>http://svs.gsfc.nasa.gov/goto?4016</u>

Satellite Integration and Testing

Σ

œ

D

0

3

L L

0

GPM Core Observatory in the Space Environmental Simulator at Goddard Space Flight Center

Mission Operations Control

ж Э

0

Ω

C

۵ ۵

0

٦

Launched at 1:37 p.m. EST, Feb 27, 2014

GPM launch video: <u>http://svs.gsfc.nasa.gov/goto?11496</u>

GPM First Light Imagery!

On March 10, the Core Observatory passed over an extra-tropical cyclone about 1055 mi (1700 km) due east of Japan's Honshu Island.

œ

٥

n

0

The storm contained heavy rain and snow and is the first time a satellite has been able to view an extratropical storm in 3D

Dual-frequency Precipitation Radar view inside the extra-tropical cyclone observed on March 10, 2014

GMI instrument showing 13 channels, each sensitive to different types of precipitation

Societal Benefit Areas

œ

2 0

-ე

œ ۵.

0

٦

Extreme Events and Disasters

- Landslides
- Tropical cyclones
- Floods
- Re-insurance

Water Resources and Agriculture

- Famine Early Warning System
- Drought Monitoring
- Water resource management
 - Agricultural monitoring

Weather, Climate & Land Surface Modeling

- Numerical Weather Prediction
 - Land System Modeling

Global Climate Modeling

Public Health and Ecology

- Disease tracking
- Animal migration

GPM and TRMM applications: <u>http://pmm.nasa.gov/applications</u>

Σ

œ

0

Ω

C

œ

0

6

Hurricane Katrina hot towers animation: http://svs.gsfc.nasa.gov/goto?3253

Landslide Hazard Forecasting

Σ

œ

4

Σ

0

٩

C

œ

0

5

Above: Image from Landsat 8 pan-sharpened natural colour 15 m resolution data taken Sunday morning, March 23rd. Photo courtesy of Jesse Allan (Sigma Space Corp/NASA)

Agriculture and Drought

ж С

U

œ

٥

download large image (4 MB, JPEG, 3438x4584)

acquired January 17 - February 1, 2014

Impact of drought on California based on data from the <u>Moderate Resolution Imaging</u> <u>Spectroradiometer</u> (MODIS) on NASA's Terra and Aqua satellites, the map contrasts plant health from January 17 to February 1, 2014, against average conditions for the same period over the past becade.

Improved modeling capabilities

Improving Weather Forecasts through assimilation of accurate global precipitation data f^{μ} f^{μ}

œ

٥

Understanding precipitation's role in a changing climate

Global climate models predict significant changes in precipitation amount and intensity over the 21st century. We need global measurements to improve and validate these models.

Σ

U

œ

0

Ŀ

Landsat: http://www.nasa.gov/landsat or http://landsat.usgs.gov/

 The Gravity Recovery and Climate Experiment (GRACE) is a joint satellite mission of NASA and German Aerospace Center (DLR) that can measure changes in total, column-integrated Terrestrial Water Storage (TWS) from space.

1

- GRACE is unique in its ability to monitor water at all levels, down to the deepest aquifer
- Provides a time-series of monthly time-variable gravity field estimates > mass changes in the ocean, of ice, and on land > affect the motion of all Earth satellites, including GRACE

GRACE

In 2014, for the first time in more than a decade, five NASA Earth science missions are launching to space in a single year. The first, the GPM Core Observatory, launched on Feb. 27 (above).

œ

٩

0

Ω

υ

œ

۵.

0

٦

www.nasa.gov/earthrightnow

http://www.nasa.gov/earthrightnow

Orbiting Carbon Observatory-2 (OCO-2)

- Set to launch in July, 2014
- NASA's first dedicated remote sensing satellite to study atmospheric carbon dioxide
- Will be able to characterize CO₂ sinks and sources on a regional scale and quantify CO₂ seasonal variability

http://oco.jpl.nasa.gov/

Earth Right Now

- Set to launch in August (will be added to ISS)
- Measures ocean surface wind speed and direction
- To replace NASA's QuikScat satellite, which stopped collecting data in 2009

- Set to launch in September (will be added to the ISS)
- Measures the location, composition and distribution of pollution, dust, smoke, aerosols and other particulates in the atmosphere

http://winds.jpl.nasa.gov/missions/RapidScat/ http://www.nasa.gov/mission_pages/station/research/news/cats_in_space

Soil Moisture Active Passive (SMAP)

- Set to launch in November, 2014
- Global mapping of soil moisture and freeze/thaw state
- Soil moisture data will help scientists understand the processes that link the water, energy and carbon cycles, and improve weather and climate models and forecasting

http://smap.jpl.nasa.gov/

<u>www.nasa.gov/GPM</u> Twitter: @NASA_Rain Facebook: NASA.Rain More GPM videos, data visualizations, and animations: http://svs.gsfc.nasa.gov/Gallery/GPM.html